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The refinement criteria (consistency criteria) of the ~2 and tangent formulae are discussed. From these 
criteria the properties of ~z solutions in various space groups are evaluated. Structure determinations 
can then be divided into five categories according to the properties of the most consistent ~2 solution. 
In three of these, trivial phases are obtained. For solving non-centrosymmetric structures in which the 
~z formula produces centrosymmetric phases (such as structures in P21), a new method (~2P method) 
is proposed which makes use of both ~2 and Patterson techniques. In structures for which the most 
consistent ~2 solution corresponds to the trivial set of phases ~hk~ = 0, Harker-Kasper inequalities or 
other methods have to be used in order to select the most reliable solution from the different sets of 
phases built up by means of the ~2 relation. In an appendix, new weighting schemes for the tangent 
refinement are proposed. 

Introduction 

In the direct determination of phases ef non-centro- 
symmetric structures the Y.2 formulae 

IP 'h= <~/]k "1- ~/]h- k>k 
and 

IE~e~_~l (~/~ + ~/~_~) 
k 

~u,,= ---- Z I E k E h - k l - -  
k 

and the tangent formula 

IgkEh-kl sin (~Uk + ~h-k) 
k 

tan ~'h = -~  IEkEh-kl COS (~Uk+ ~Uh-k) 
k 

are used.* 
Methods based on these expressions (Karle & Karle, 

1966; Germain, Main & Woolfson, 1968, 1970, 1971; 
Hall, 1970; Schenk, 1971; and others: see Ahmed, 
1970) try to select those sets of phases wkich are most 
consistent with one of the above formulae. However in 
some cases it has been observed that the Y2 formula is 
best fulfilled by apparently incorrect phases. For in- 
stance, in the space groups P2t  and P4x, E maps of 
consistent phase sets show a pseudo mirror plane per- 
pendicular to the polar axis (see, for example, the 
discussion in Hall, 1970, pp. 69-70, and in Coulter & 
Dewar, 1971, p. 1736), and in fact these solutions are 
centrosymmetric. Hall (1970) states that this is due to 
an incorrect definition of the enantiomorph. Other 
workers try to overcome this difficulty by holding 
constant initial phases which are considered the most 
reliable. 

* See end of paper for a list of symbols. 

The first purpose of this paper is to show that in 
many space groups the ~2 formula gives solutions of 
incorrect (higher) symmetry. Moreover, very trivial 
solutions are sometimes obtained. The second purpose 
is to give a new method for these space groups which 
makes use of both the ~2 and the Patterson techniques. 
In the Appendix a weighting scheme for the tangent 
refinement is discussed. A preliminary publication has 
appeared in Proc. Roy. Neth. Acad. Sci. (Schenk, 
1972a). 

Consistency criterion for the ~-2 relation 

The most useful form of the ~-2 relation is 

IEkEh-kl (~'k + ~'h-~) 
k . . . . .  

Vh= ~lEkEh-£[ (1) 
k 

If a phase calculated by means of equation (1) is dif- 
ferent from its previous value v~ld then: 

R2(V~ m) > R2(Vn) (2) 

in which 

R2(~Uh) = ~ IEkEh-kl (-- ~'h + ~Uk + ~Uh--k) 2 
k 

with 
- re  < ( -  ~Uh+ Vk+ 9'h-k) --< re. 

Therefore refinements based on equation (1) consist in 
mmlmlzmg 

CC2 = ~ [EhlR2(~h) 
h 

= ~ IEhEkEh-kl ( -  Vh + Vk + Vh--k) 2" (2a) 
h,k  
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If equation (1) is valid, the phase set corresponding to 
the true structure should have the lowest value of CC2. 
Moreover, if it is assumed that the distribution of 
(g/u + g/h-u) is symmetric, then 

R(g/~  ~d) ~ R ( g / h  ) (3)  

in which 

R(g/h) = ~, IEuEn-kl I-  g/h + g/k + g/n-kl 
k 

with 
--7~'< ( - -  g/h "]- g/k "jr" g / h - k )  -~ 7[. 

Then refinements based on equation (1) also result in 
mlnmuzmg 

c c =  ~, IEnlR(g/n) 
h 

= ~, IEnEuEh-kl I-- g/n+ g/u+ g/h-kl. (3a) 
h,k 

In centrosymmetric structures - g/n + g/u + g/h- U has 
only two possible values 0 or n so that CCz = nCC. The 
minimization of both is equivalent to that of 

~, ~, IgnguEh-ul [1 - s ign  (h) sign (k) sign ( h - k ) ] .  
h k (4) 

This criterion is used successfully in automated centro- 
symmetric symbolic addition. 

Consistency criterion for the tangent refinement 

Phase refinements based on the tangent formula 

IE~En-ul sin (g/u + g/u-u) 
S 

tan Vh= -~- = ~ IEuEh-u[ COS (g/k + g/h-k) (5) 
k 

k 

are used frequently in direct phasing procedures. How- 
ever, equation (5) is not employed in its strict form, 
because then phases can only be calculated in the 
interval 0 < g/h < n. With the help of the signs of S and 
C, a phase Vh is uniquely determined in the interval 
0 < g/n < 2n. Thus, instead of equation (5), in practice 
phases are calculated with 

and 

S 
sin g h =  ~ IE~En-ul 

k 

C 
cos g/n= ~ IEkEn-ul 

k 

or with the equivalent expression" 

IEkE,,_ul exp [i(g/,, + g/n-u)] 
exp (ig/h)= t 

IEuEn-kl 
k 

(6) 

If a phase ~n calculated with equation (6) is different 
from its previous value g/~la then 

R~(g/~, ''~) > R,_(g/n) (7) 
in which 

Rz(g/n): ~ IEkEn-ul I exp [i(g/k + g/h-u)]--exp (ig/n)[2. 
u 

Thus refinements based on equation (6) minimize 

COT2= ~, IEdR2@h) 
h 

= ~ EnlEuEn_ulexp[i(g/u + g/h_U)]-- exp (ig/h)l 2. 
la,k 

(8) 

If equation (6) is valid, the phase set corresponding to 
the true structure should have the lowest value in 
equation (8). 

Assuming that the distribution of exp [i(g/k + g/h-k)] 
is symmetric it can also be shown that 

CCT= ~ [EnlR(g/h) 

= ~ IEnEuEn-kl[ exp [i(g/~, + g/n-k)--exp (ig/~)l 
h,k 

(8a) 
is minimized. 
Now 

lexp [fig/k+ g /n-k) -  exp (ig/h)l 

= 21 sin ½(-- g/h + g/k + g/h--k)[ 

SO that the refinement criteria can be written as 

CCT2= Z IEnEuEn-kl sin 2 ½(-  g/h + g/k + g/h--k) 
h,k 

and 

(9) 

CCT= ~ IEhEkEh-kl l sin ½(--g/h+~k+g/h--k)l . (10)  
h,k 

In the case of a centrosymmetric structure for which 
- g / h +  Vk+ Vh--k equals zero or n, equations (9) and 
(10) are exactly the same and their minimization is 
equivalent to that of equation (4). 

The effect of symmetry on the consistency criteria 

For convenience we will discuss only the properties of 
equation (3a). The results apply equally to equations 
(2a), (9) and (10). 

In equation (3a) the indices h refer to points of the 
asymmetric part of the reciprocal lattice, and k and 
h - k  to points of the reciprocal lattice as a whole. 
Now only the phases of the asymmetric part have to 
be determined, all other phases following from the 
space-group symmetry relations• If k is in the reciprocal 
lattice as a whole and k* is the corresponding reflexion 
in the asymmetric part, then a symmetry relation can 
be expressed as: 

Vk = SkVk* + Ck (11) 

A C 28A - 4 
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in which Sk = + 1 or -- 1 and Ck = 0, ½re, etc., and equa- 
tion (3a) can then be written as 

CC= ~. IEhEkEh-l,[ l-- g/h +Sk~bCk* 
h,k  

q-Ck q-S(h_k)~t(h_k),-k-C(h_k)[ (12) 

where h, k*, and ( h - k ) *  are now all in the asymmetric 
part of the reciprocal lattice. 

Using the shorthand notations/?3 = IEhEkE<h-u)[ and 
C =  ek + C~_ k the consistency of a set of phases can be 
given as: 

CC= ~ E3l--~h+Sk~k,+S(h-k)~(h-U)*+CI. (13) 
h,k  

Although it follows from the validity of equation (1) 
that the lower the minimum in CC the higher the 
probability of the set phases being correct, in many 
space groups trivial sets of phases have CC values 
smaller than those based on the correct phases. In this 
section the properties of sets of phases corresponding 
to minima in equation (13) will be explored for some 
space groups, using the symmetry relations as given in 
International Tables for X-ray Crystallography (1952). 
It will be shown that the triviality of a set of phases 
is dependent on the values of Sk,S<h.k) and C and on 
the presence of groups of reflexions, which are re- 
stricted to discrete values (0, zc,½rc etc.). 

Then structures can be divided into five categories 
according to the properties of the phase set corre- 
sponding to the smallest CC value (CC~): 

Category 1 : 

Category 2: 

Category 3: 

Category 4: 

Category 5: 

centrosymmetric structures, for which 
CC~ corresponds to a set of trivial phases. 
centrosymmetric structures, in which CC~ 
may correspond to the correct structure. 
non-centrosymmetric structures, in which 
CC~ may correspond to the correct struc- 
ture. 
non-centrosymmetric structures in which 
CC~ corresponds to a centrosymmetric 
(thus incorrect) solution; the centric 
projection reflexions may have correct 
phases. 
non-centrosymmetric structures for which 
CC~ corresponds to a centrosymmetric 
trivial set of phases. 

Each category will be illustrated by an example. 

Example of category 1 
In this category all C in equation (13) equal zero. 

Then the trivial solution with all phases ~,~ = 0  is the 
most consistent set of phases, as is well known for 
space group P~. The phase relation in PT is 

~t~ = ~'h-~-r = zop.  

Thus Sk=S(n_k)=l  and C = 0 .  In this way equation 
(13) reduces to 

CC= ~ E31~h-t- ~'k,-t- ~t(n_k),l • (14) 
h , k  

This function equals zero for all ~Uh = 0. Thus in P]" the 
lowest CC minimum corresponds to a Patterson- 
related E map, and consequently the correct structure 
must have a higher CC criterion. One of the other 
minima of equation (14) may correspond to the correct 
structure, but this need not be the solution with the 
next lowest CC. 

All centrosymmetric space groups containing 
positions with point symmetry equal to the point group 
symmetry of the space group, such as P2/m, C2/m, 
Pmmm, Cmmm, belong to this category. 

Example of category 2 
In this category the correct phases can be derived, 

as will be shown for space group P21/m. The phase 
relations of P21/m are 

k = 2n ~,k~ = ~Uh-~7 = ~'h~z = gt~k7 = zop 

k = 2n + 1 ~ Nhkl = N~-'~ = zop 
t gt~,~z = ~'~k~ = ~hkt + ~z. 

Then in (13) s~, S(h-k)= + 1 and C=zop .  Thus (13) 
reduces to 

CC= ~. E3l~h-t- gtk,-t- ~(n_k) ,+zopl .  (15) 
h , k  

Because C =  zop, the trivial solution ~'h = 0 is no longer 
the one with the lowest CC. The process of finding the 
correct phases ~'h is now equivalent to the location of  
the lowest minimum of CC. 

Other space groups in this category are P21/e, 
C2dm, C2/e, Pnma etc. In practice, structures in this 
category appear to offer little trouble. 

Example of category 3 
There are some non-centrosymmetric space groups, 

for instance P222~, for which the phases may be calcu- 
lated correctly by means of (1). In P222~ the sym- 
metry relations are: 

~hg0=zoP, ~ok, = z o p ,  

t- 
1 =2n  ~ ~'nkZ = - ~-'~7, ~U~kZ = - q/hkt, ~'h~z = - ~hkz, 

t ~hk7 = -- ~hkZ, ~h0Z = zop .  

~u~0z = h tp .  

Thus Sk, Sh-k = + 1 or -- 1 and C = zop. The consistency 
criterion (13) reduces to: 

CC= ~ E3l- -~n+~ 'k ,_+~(h-k) ,+zopl .  (16) 
h , k  

A minimum in (16) corresponds to a set of true non- 
centrosymmetric phases. This can be seen from a 
reflexion forming the terms of (I 6) with two projection 
reflexions of different projections. 

Two terms of (16) could be 
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and thus 

E31- g/m + ~0~0 + g60x + (zop)l (17) 

E31- gtm + ~0xl + ~00 + (zop)[ (18) 

E3I - ~um + (zop) + (htp) + (zop)l (19) 

E3I-  ~ m  + (zop) + (zop) + (zop)[. (20) 

In order to simultaneously satisfy relations (19) and 
(20) as nearly as possible, ~um will have to assume a 
true non-centrosymmetric value. Thus the smallest 
minimum in equation (16) corresponds to a set of non- 
centrosymmetric phases and if equation (1) is valid, 
this set may well define the correct structure. 

All space groups having an origin fixed by symmetry 
and at least one screw axis, such as P222~, P2t2x2, 
P212~2t, belong to this category. 

Example of  category 4 
In this category the phases of the centric projection 

of the non-centrosymmetric structure may be found 
correctly, but all other phases are calculated centro- 
symmetric as well. This is the case in P21 for instance, 
for which the symmetry relations are: 

k = 2n ~ ~'~k7 = ~ghkt 
t 

{ v/-ff~ = -- ~hkl 
k = 2n + 1 gak7 = Z~ + ghkl 

~h-~l = zc - -  g/ht, Z 
~%o~ = z o p .  

Because we choose the asymmetric part of the recipro- 
cal lattice such that k >0,  equation (13) reduces to: 

CC= ~ Eal - gth + sign (k')~tk, 
h , k  

+ sign (k - k') ~t(h - k)* + zop[. (21) 

The phases of the projection reflexions hOl can be cal- 
culated with equation (1): 

~hO!  

IE~'k'rEh-h' .~' .  ~ - v l  (~'h'k'V + ~',-~' .~' .  ~ - V )  
h ' k ' l '  

IEh'k','Eh-h'.~'.,-z'l 
h ' ,  k ' ,  1' 

(22) 

Thus in equation (21) a considerable number of terms 
are of the type 

- -  ~¢hOl "31- ~¢h2kl2 - -  ~ff h3kl3 -1- zop = 0 (23) 

where, as ~'not = zop, the phases of the two hkl reflexions 
are related by 

~h2~z2 = q/~3kl3 + zop.  (24) 

From equation (24) it can be seen that the phases of 
all reflexions with the same value of k are found equal 
modulo ~r. As can be easily seen from equation (21) the 
solutions of the ~2 relation consist of sets of phases g/hk~ = 
kq + zop (in which q is a constant within the set) which, 

apart from an origin shift, are identical with the centro- 
symmetrical solution ~thk , = zop. Therefore the solution 
with the lowest CC does not represent the correct 
structure, though the phases of the hOl projection may 
be correct. Since the correct phases are not restricted 
to zop, the terms of equation (21) for the correct 
phases must deviate from 0, which results in a higher 
consistency index CC for the correct structure. 

For the known structure of L-alanyl-glycine (Koch & 
Germain, 1970), space group P21, the above statements 
have been verified. Tangent refinements (see Appendix) 
have been carried out for the 136 reflexions with the 
largest En, using 1085 triples h , k , h - k ,  all with 
E3 > 2. The first tangent refinement was done with the 
true phases ~u[, of the strongest 41 reflexions as input. 
These phases were kept constant during 5 cycles, then 
all 136 reflexions were allowed to change during 25 
additional cycles. For each cycle the consistency, 
equation (3a), is given in Table 1. The phases are con- 
verging to a centrosymmetric solution with phases ah. 
At the end of the 30th cycle the mean deviation of the 
actual values ~h of the 136 phases from their centro- 
symmetric values ah is 24 °, whereas the true structure 
has a mean deviation from centrosymmetry of 45 °. 

Table 1. Tangent refinement of  136 reflexions of  L- 
alanyl-glycine using the true phases of  the 41 strongest 

E's as input 

These phases were held constant for five cycles. In column 1 the 
cycle number is given, in column 2 the consistency criterion 
CC and in column 3 the total sum of E3 which is included in 

the calculation of CC. 

1 2 3 1 2 3 
1 5636 90 14 79044 931 
2 90215 822 15 78860 931 
3 89923 931 16 78641 931 
4 88014 931 17 78486 931 
5 87707 931 18 78285 931 
6 87628 931 19 78165 931 
7 83816 931 20 77999 931 
8 82050 931 22 77760 931 
9 81140 931 24 77576 931 

10 80413 931 26 77425 931 
11 79973 931 28 77296 931 
12 79593 931 30 77151 931 
13 79304 931 

For the second tangent refinement, the 41 strongest 
E 's  were given the pure centrosymmetric phases eh, as 
deduced from the first tangent refinement. Again these 
phases were held constant during the five first cycles. 
Then all 136 phases were refined for another five cycles, 
the results of which are given in Table 2. 

By comparing Table 1 and Table 2 it can be seen that:  
(1) The internal consistency of the starting group of 

41 reflexions is much better for the eu'S than for the 
gt•'s (2185 and 5636 respectively). 

(2) After five cycles the c~h-refinement has a smaller 
consistency criterion than the corresponding ~u refine- 
ment (68695 and 87707 respectively). 

A C 2 8 A  - 4* 
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(3) The final consistency of the set ~h is even better 
than that of the ~Uu after 30 refinement cycles (67420 
and 77151 respectively). 

Table 2. Tangent refinement of  the 136 phases of  L- 
analyl-glycine using as input data the ~h values of  the 
strongest 41 E's, as calculated from the last cycle of  the 

refinement described in Table 1 
These 41 phases were kept constant for the first five cycles. See 

Table 1 for the meaning of the columns. 

1 2 3 
1 2185 90 
2 68305 822 
3 70635 931 
4 68695 931 
5 68695 931 
6 67935 931 
7 67935 931 
8 67420 931 
9 67420 931 

10 67420 931 

Other examples of space groups belonging to cate- 
gory 4 are Pc, C2~, P21nb, C2ca, P4 etc. These have 
in common an origin that is not fixed and at least one 
screw axis or glide plane. 

Example of  category 5 
In this group the solutions of the ~2 formula are 

also centrosymmetric, but now the smallest CC value 
corresponds to a trivial solution. An example is P 1. 

The phase relation in P 1 is: 

g~kZ = -- g~-'k7 • (25) 

Thus with Sk, S<h-k) = -  1 or + 1 and C = 0 ,  equation 
(13) is changed to 

CC= ~ E31- ~Un _+ ~tk, _+ ~<h-k)'l • (26) 
h , k  

The Patterson related trivial solution with all ~u~ = 0  
gives a consistency criterion CC= O. Moreover all sets 
of phases 

~/hk~ = hp + kq + lr (27) 

in which p, q and r are constants within a set, are fully 
consistent (CC= O) and correspond to the same trivial 
solution. 

An E map calculated with the phases from equation 
(27) is always equivalent to an E map based on ~/nk~ = O, 
in spite of the fact that, at first sight, the phases appear 
non-centrosymmetric. The only difference is a shift of 
origin. The other minima in equation (26) also corre- 
spond to centrosymmetric phase sets. 

All space groups containing positions with point 
symmetry equal to the point group symmetry of the 
space group, such as P2, Pro, C2, Cm, P222, P2mm, 
belong to this category. 

Practical  consequences 

Because of the properties of the ~2 formula, equation 
(1), and the tangent formula, equation (6), in various 
space groups, the strategy of tackling a structure by 
means of these formulae must be different for each 
category mentioned in the preceeding section. We will 
briefly outline the approaches for these categories" 

Category 1 
The fully consistent ~2 solution has phases ~Vh=0. 

In our opinion the consistency indices cannot be 
employed to find the correct phases, because in many 
cases the next most consistent phase sets do not corres- 
pond to the correct structure either, but to superposi- 
tions of a number of cell contents at wrong positions. 
Other methods (for instance Harker-Kasper inequali- 
ties, producing negative signs) have to be used in order 
to select the correct phase set from all the sets built up 
by means of the ~2 relation. 

An example of this procedure is the structure deter- 
mination of a derivative of cyclopropane with the 
formula C6H9OaN , space group PT, Z = 2, very recently 
carried out in our laboratory. Automatic symbolic 
addition (Schenk, 1969) was carried out with three 
symbols. Using Harker-Kasper  inequalities the relia- 
bility of the fifth and sixth solution in order of in- 
creasing consistency CC was higher than that of the 
others. An E map of the fifth solution proved to be 
correct. Details of the structure will be published in 
due course (de Jong & Schenk, 1972). 

Category 2 
In this category the consistency criterion is indeed a 

measure of the reliability of a phase set. A sensible 
procedure here is to calculate E maps in order of in- 
creasing consistency criterion CC. 

Category 3 
For the non-centrosymmetric structures in this 

category the situation is similar to that of category 2. 
Thus the symbolic addition method (Karle & Karle, 
1966), multisolution tangent refinement (Germain & 
Woolfson, 1968), fast symbol determination method 
(Schenk, 1972a, b) and other methods (see Ahmed, 
1970), which are all methods based on the ~2 formula 
only, may produce the correct structure. 

Category 4 
In these non-centrosymmetric space groups the ~2 

relation produces centrosymmetric phase sets. Thus at 
most it can be expected that in one or more phase sets 
the phases of the centrosymmetric projection are cor- 
rect. If this is the case and the complete centrosym- 
metric phase set does contain information about the 
true structure, it can only be that both the true structure 
and its enantiomorph are present in the E map. The as- 
sumption that the centrosymmetric ~2 solution of small- 
est CC criterion may correspond to such a super- 
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position is plausible. It is borne out by the experimental 
results of several investigators. 

In the next section a new method based on this 
principle will be proposed for solving structures in 
categories 4 and 5. At the moment three structures 
have been solved using this method. 

Category 5 
In this category of non-centrosymmetric structures, 

where Y.2 produces only centrosymmetric phases, the 
consistency criterion is no indicator of the relation of 
the centrosymmetric E maps and the true structure for 
the same reason as for group 1. Other methods have to 
be used to estimate the reliability of sets of phases 
obtained by means of ~2 or tangent formulae. Harker-  
Kasper inequalities may be effective, but obviously not 
for P1. To find the true structure from a reliable 
centrosymmetric E map thus obtained, the method to 
be described in the next section can be used. 

The E2Patterson method (~2P method) 

This method will be effective in non-centrosymmetric 
structure determinations of categories 4 and 5. Since 
the ~z relation produces centrosymmetric phases any- 
way, the most sensible procedure is to tackle these 
structures centrosymmetrically. Then in the last stage 
the asymmetric unit of the true structure will be found 
from Patterson superpositions. 

The method will be outlined for the frequently oc- 
curring space group P2~, but with very small changes 
it is useful for all non-centrosymmetric space groups 
in which the ~2 or tangent formula produces sets of 
centrosymmetric phases. 

The interpretation of  centric ~.2 solutions of non-centro- 
symmetric structures 

The Fourier summation of a non-centrosymmetric 
structure can be given by 

Q(r)= ~ IFhl exp (i~h) exp (2zc ihr) 
h 

and the Fourier summation of its enanthiomorph in- 
verted at the origin by 

QX(r)= ~ [Fh[ exp (--ig/h) exp (2rcihr). 
h 

Thus the E map of the sum of structure and enantio- 
morph is given by 

Qc(r)=Q(r)+ol(r) = ~ IEhl [exp (i~gh)+exp (--i~'h)] 
h 

× exp (2rcihr) 

= ~ IEhl COS g/~ exp (2re ihr) 
h 

= ~ Sh[Eh COS ~h[ exp (2re ihr) 

(30) 
in which sn = sign (cos g/n). 

For this compound structure the consistency criter- 
ion for centrosymmetric structures (4) is" 

~. IEh cos V/hEk COS g/kEh-k COS g/h--kl 
h , k  

x (1 - ShSkSh- k) = minimum. (31) 

In practice only E maps 

o; = ~ s~,lEhl exp (2zc ihr) 
h 

(32) 

can be calculated in which the sets of signs s~, cor- 
respond to minima in 

~ IEhEkEh-kl (1--S£S~,S£_k). (33) 
h , k  

If in P21 a phase set g/~, corresponds to the true struc- 
ture, a shift q/2n of the origin along the y axis gives 
rise to a new phase set 

~Uh = ~U~ + kq . 

Thus there are an infinite number of phase sets each 
corresponding to the true structure and each giving 
rise to a compound E map, equation (30), of symmetry 
P2~/m with its own consistency criterion, equation (31). 
If the set of signs s£, calculated with equation (33) is 
approximately equal to the Sh of one of the equations 
(31) then an E map, equation (32), gives a distorted 
image of the corresponding compound structure; 
distorted because instead of IEh cos ~hl the IEul have 
been used. 

Three comments have to be made" 
(1) More than one solution of equation (33) may 

correspond to a correct compound structure, each 
with its own minimum, equation (31). 

(2) Because of the approximations, the lowest mini- 
mum in equation (33) does not necessarily contain the 
structure and its enantiomorph. 

(3) In P2~, 

SE= ~ IEhEkEh-k COS g/h COS g/k COS ~h--kl 
h k  

is a function of the phases g/h- Minima in equation (33) 
correspond to those functions of equation (31) in which 
SE is large. This is the case for those compound struc- 
tures in which as many atoms of the structure as pos- 
sible coincide with atoms of the enantiomorph. Since 
the ~2 solutions of P21 are found in P21/m, at least one 
atom will be found in the mirror plane. If several atoms 
have the same y coordinate, these atoms will be found 
in the mirror plane. 

Implementation 
The ~2 P method for solving non-centrosymmetric 

structures with centrosymmetric Y.2 solutions makes 
use of both centrosymmetric direct phasing and the 
Patterson technique. For P2~ the method consists of 
five steps; 
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Step 1" 

Step 2" 

Step 3" 

Step 4" 

Step 5: 

centrosymmetric symbolic addition in space 
group P21/m. Classification of the various solu- 
tions and order of increasing consistency CC. 
calculation of the compound E map of the 
most reliable solution. 
searching for the highest maximum M in the E 
map. If the compound E map is correct, this 
peak is the position of coinciding atoms of 
structure and enantiomorph. 
calculation of a Patterson superposition map 
from an E2-Patterson synthesis on the basis 
of the coordinates of M and its equivalent 
position in P21. If the E map contains a correct 
compound structure this superposition map 
should reproduce the E map, and the next 
step can be carried out. Otherwise, the next 
most reliable solution is tested starting with 
step 2. 
in the E map a second maximum is selected 
which in all probability belongs to one of the 
enantiomorphs only, and this is used to calcu- 
late another Patterson superposition map. In 
this map the complete asymmetric unit of the 
P2a cell should be present, Difficulties may 
arise for structures in which the molecule has a 
pseudo mirror plane perpendicular to the 21 
axis. 

For the other space groups of category 4 a similar 
procedure can be used. In space groups of category 5, 
the only modification is in step 1 where the classification 
of the various solutions had to be carried out using, for 
instance, Harker-Kasper inequalities. 

Results 
The known structure of L-alanyl-glycine (Koch & 

Germain, 1970) space group P2~, has been solved by 
the Y2P method. Following Koch & Germain the 
phases of 303, 205 and 512 were set at zero in order to 
define the origin but the additional starting phases of 
i34, 521,462 and 104 were each restricted to 0 or zc. 
Then, with the 16 different starting sets, tangent refine- 
ment was carried out. It appeared that the set ~i34 = 0, 
v/~2t = 0, V462 =0  and V104 = zc resulted in the best con- 
sistency. An E map showed peaks at all the positions 
given by Koch & Germain and at the positions of 
the corresponding enantiomorph. A fourfold Patterson 
superposition map revealed all atoms of the correct 
structure only. It is interesting to note that tangent 
refinement of the correct phases leads to the centro- 
symmetric solution described above (see Table 2). 

Mr E. Hessling of our laboratory has solved the same 
structure independently, using an alternative starting 
set of symbolic phases in the half-automatic symbolic 
addition (Schenk, 1969). His best solution was similar 
to that shown in Table 2. The map of the second best 
solution also represented a correct but different com- 
pound structure. Whereas in the first solution the 
highest maximum in the mirror plane was C(4), in 
solution 2 it was C(3). 

The unknown structure of 1,1,5-trimethyl-6-carbox- 
yl-cyclohexene-5, (C10H1602), has been tackled suc- 
cesfully in the same way. The acid crystallizes in the 
space group C2ea with Z =  8. Centrosymmetric sym- 
bolic addition using automatic programs (Schenk, 
1969) was carried out in space group Cmca with 4 
symbols. An E map of the most consistent solution, 
followed by two fourfold Patterson superpositions, 
revealed all the atoms of the molecule. Full details of 
the structure will be published elsewhere (Schenk, 
1972). 

Another structure which has been solved using the 
~2P method is that of benzimidazole. This compound 
crystallizes in space group P2~nb, Z = 4 .  Symbolic ad- 
dition was carried out in space group Pmnb. Full 
details of this structure will be published in due course 
(Dik, 1972). 

Comparison of the L P  method with other 
direct methods 

For structure determinations in categories 4 and 5, the 
~2P method will be compared with two different direct 
methods: a ~2 method and the structure invariant 
method (Hauptman, 1970). As representative of the 
Y.2 methods the multisolution tangent refinement 
procedure (Germain & Woolfson, 1968) is arbitrarily 
chosen. 

The multisolution tangent refinement-method ( M T R  
method) 

Although the M T R  method (Germain & Woolfson, 
1968) starts with sets of essentially non-centrosym- 
metric phases, the final sets are pseudo-centrosym- 
metric as a result of the properties of the refinement 
criterion, equation (9). However, at first sight this is 
not obvious, because, in P21 for instance, sets of phases 
~l h = ~bChk I = kq + O~h, with ah = zop and q a constant 
within the set, are also centrosymmetric. 

The set ah can be extracted from ~'h in the following 
way" 

(1) determination of q by finding the linear relation 
between ~'h and k ,  

(2) calculating new phases 

~uh= Vh-- kq , (34) 

(3) forming the centrosymmetric phases c~h such 
that" 

7~ 7Z 
C~h = 0 if -- ~- < ~Uh < 

3ZC (35) 7~ 

c~h=zc if~- <V~_< 2 

Then the mean deviation from centrosymmetry of the 
phases 9'h is: 

D C =  h 1 " (36) 
h 
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Now,  if the values of  the starting phases in the M T R  
method were restricted to 0 or  n, the phases c~,, would 
be obtained directly. Since in the MTR method the 

~z 37r 
values of  the starting phases were chosen as 

4 ' 4 '  

57r 7re 
- ~ -  and --~-, many  different starting sets must  refine 

to the same centrosymmetric phase set C~h. 
In their paper  on L-alanyl-glycine, Koch & Germain  

(1970) reported that  in E maps  of  the ten most  con- 
sistent solutions, large parts  of  the molecule were 
present in addit ion to a number  of  ghost peaks (note 
that  these peaks must  belong to the enant iomorph) .  
We repeated the tangent-refinement process of  Koch  
and Germain ;  for each set of  phases V,, we determined 
the corresponding set ~h and the deviation f rom 
centrosymmetry,  DC. The results are given in Table 3. 
Nine solutions have the same set of  centrosymmetric  
phases ~h, the E map  of which gives the superposition 
of  structure and enant iomorph.  A second set of  centro- 
symmetric phases ~,  was the basis of  the next 13 solu- 
tions. Only 20 % of the phases, ~,,  were different f rom 

the C~h, SO that  possibly par t  of  the molecule will be 
present in an E map  based on ~,. 

In conclusion, the following objections to the 
use of  the M T R  method in structures coming in the 
categories 4 and 5 can be formulated:  

(1) Many  essentially equal solutions are all refined 
by the tangent  procedure.  In order  to avoid the calcu- 
lation of  a great  number  of  nearly equal E maps,  a 
ra ther  complicated analysis is necessary to find out 
which solutions have approximately equal phases. 

(2) The E maps  may  be difficult to interpret  because 
many  ghost  peaks arising f rom the enant iomorph  are 
present. These ghost peaks may even be higher than 
the corresponding 'correct '  peaks. 

The structure-invariant method ($1 method) 
With the SI method (Haup tman ,  1970) numerical 

values of  the structure invariants 

Ck = cos (--  ~Uh + ~Uk + ~Uh- k) 

are predicted using a complicated expression. The 
origin defining reflexions are chosen, and, with other 
relations (~1 etc.), a small number  of  addit ional phases 

Table 3. Multiple tangent-refinement of  L-analyl-glycine 

The method used for searching the centrosymmetric phase set is given in equations (34), (35) and (36) The phases are given in 
mc/s = (radians/2zc)103. The origin defining reflexions are ~303 = 0mc/s;  ~ 0 5 =  0mc/s and ~g12= 0mc/s. The 31 different solutions 

belong to only three different sets of centrosymmetric phases. 

Additional starting phases Refinement Constant Centro- DC of 
I34 521 462 104 criterion q from symmetric set equation 

E=2.27 E=2.55 E=2.32 E=2.56 on relative equation (34) of equation (36) 
~ ~ ~ scale in mc/s (35) in mc/s 

125 125 125 500 0.17 +26 ~h 44 
125 125 375 500 0.17 +60 ~n 33 
625 625 125 500 0.17 -145 ~n 26 
625 875 375 500 0.18 --110 ~n 34 
625 625 375 500 0.18 -- 112 ~h 65 
125 875 125 500 0-19 +25 ~n 36 
625 375 125 500 0.20 + 196 ~n 63 
625 875 125 500 0-21 --150 ~n 80 
625 875 375 500 0.21 +230 ~n 60 
125 125 375 0 0-17 +59 ~n' 9 
625 625 125 0 0.17 -- 143 an' 27 
125 125 125 0 0.17 +25 ~n' 26 
625 875 375 0 0"18 --106 ~n' 38 
625 375 125 0 0.18 + 191 ~n' 49 
625 625 375 0 0"18 --105 an" 50 
625 875 125 0 0"19 --142 ~n' 41 
125 875 125 0 0"19 +21 ~n' 39 
125 375 125 0 0.19 --311 ~ '  55 
625 375 375 0 0"19 +228 ~n' 50 
125 375 375 0 0.20 --276 ~n' 57 
125 875 375 0 0"23 --396 ~n' 54 
875 875 125 0 0"26 +20 ~n' 85 
375 875 125 0 0-21 --60 ~n" 16 
375 875 375 0 0.21 --27 ~n" 21 
875 375 375 0 0.21 + 147 ~ "  18 
875 125 125 0 0.22 + 114 ~h" 22 
875 125 375 0 0-22 + 148 ~n" 36 
375 125 375 0 0-22 --26 ~ "  25 
875 625 125 0 0.23 --234 ~n" 41 
875 375 125 0 0.23 + 113 ~n" 37 
375 125 125 0 0"23 --60 ~n" 37 
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are determined. With the above phases as input all other 
reflexions are phased. Each phase ~'h is determined 
such that  

w,,  [cos ( -  ~,,, + ~,,, + ~, ,_, , )-  c,,] 2 
k 

( ,Oh=  - -  . . . . . . . . . . . . . . . .  E - W ~  ` . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 7 )  

k 

is a min imum.  The weights Wk are proport ional  to E3. 
Because the Ck may have all values between - 1  and 
+ 1 the resulting phase set is non-centrosymmetric,  
and may be correct. In fact the 2;2 methods use Ck 
values which are all equal: Cu z = 1. If phases are calcu- 
lated with equation (37) and C~ = 1 then the resulting 
phases cannot  be very different from those calculated 
by means of  equation (1). 

At first sight the SI method has the advantage over 
the Y.2 method and the ~2 Patterson technique that an 
image of  the structure can be produced by direct 
phasing only. However there are several objections 
to the method as it used in practice: 

(1) The quality of  the Ck values. This is the bottle- 
neck of  the method because only if the predicted Ck 
values and the true values C~ have small  differences 
can expression (37) give the true phases. The Ck and 
C~, for the 25 largest structure invariants E~ of estriol 
(Hauptman,  1970) are listed in Table 4. There are 
several large deviations Ck--C[, among these invariants 
Moreover it can be seen from the table that 
2; ICk-Ckl>> 2; IC~--CgI=E IC~,-11. 

Thus in estriol in general C~ = 1 is a better estimate 
of C~, than Ck. This implies that i f  a structure can be 
solved by the SI method, it can be solved by the ~2P 
method as well. It is even possible that  when a struc- 
ture cannot  be solved by the SI method, the better 
estimates of C z =  1 in the ~2P method may give the 
solution. 

(2) The structure invariant  method is a single-solu- 
tion method and thus in order to make progress in 
finding new phases it is necessary to assume that an 
invariant  of  small E3 is correct. In practice it is found 
that the larger E3 the better its predicted value. Multi- 
solution procedures are therefore favoured, because 
from the beginning they make use of  the largest E3 
values as a basis for the phase determination. However, 
in this case the price to be paid is that one ends up 
with a considerable number  of solutions, but in most 
cases consistency criteria or supplementary informa- 
tion (Harker -Kasper  inequalities) give enough infor- 
mat ion about  the most probable  correct solution. A 
single-solution method may fail as a result of  the in- 
correctness of an invariant  with a relatively small E3. 
Mult isolution methods fail i f  one of the highest E3 
invariants is wrong. 

(3) In the SI method the phase determination with 
expression (37) is followed by tangent refinement. Thus 
even if  the correct phases ~'h have been found, the 
tangent refinement changes the phases towards centro- 
symmetric values. 

Table 4. Values of  the structure invariant CkfOr estriol(Hauptman, 1970) 

The predicted values Ca (SI method)" the true C~, values and the predicted Ck values, as used in ~2 methods are given 

Values given by Hauptman (1970) 
C k as used 

in ~2 
A True C k: Difference methods Difference 

(~E3) C k C~ IC~-Ckl c~ IC~-C~l 
13-5 0.9458 0.9888 0.0430 1 0.0112 
10.5 1.0000 0-9988 0.0012 1 0.0012 
10.2 1-0000 0.9991 0.0009 1 0-0009 
9.6 0.8424 1-0000 0.1576 1 0.0000 
8.7 1.0000 0.9820 0.0180 1 0.0180 
8.2 0.6485 0.9553 0.3068 1 0.0447 
8.0 1.0000 0.9838 0.0162 1 0.0162 
8.0 0.9629 0.9926 0.0297 1 0.0074 
6.7 1.0000 0.9976 0.0024 1 0.0024 
6.7 1-0000 0.9737 0.0263 1 0-0263 
6.5 1.0000 0.9976 0.0024 1 0.0024 
6.4 0.9293 0.9888 0.0595 1 0.0112 
6-3 0.8970 0.9759 0.0789 1 0.0241 
6.2 1.0000 0.9960 0.0040 1 0.0040 
6.1 1.0000 0.9992 0.0008 1 0.0008 
6.0 0.9358 0.9998 0.0640 1 0.0002 
6.0 0.9975 1.0000 0.0025 1 0-0000 
6.0 1-0000 0.9717 0.0283 1 0.0283 
5.8 0.7416 0.9664 0.2252 1 0.0336 
5.7 1.0000 0.9689 0.0311 1 0.0311 
5.7 0.6617 0.9606 0.2989 1 0.0394 
5-5 1.0000 0.9928 0.0072 1 0-0072 
5.5 0.6876 0.7452 0.0576 1 0.2548 
5.5 0.8523 0.9988 0.1465 1 0.0012 
5.4 0.8866 0.9916 0.1050 1 0-0084 

Sum 1.7140 Sum 0.5750 
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(4) Since, in practice, equations (1) and (6) have 
demonstrated their great value, the following expres- 
sions: 

fP~= ~ Wk[I- P'h + ~U + !p'h-kl--arccos (Ck)] z 
a 

and 

~0t= ~ Wk {Isin ½(-  q/h + ~'k + gth-k)[ 
--sin ½ [arccos (Ck)]} 2 

may be more useful than (37). These expressions are 
closely related to the refinement criteria of the ~2 
formula and the tangent refinement. 

Objections 2, 3 and 4 can be overcome. However, as 
long as C~= 1 is a better estimate of the invariant C~ 
than the predicted Ca value of the SI  method, in our 
opinion the Y~2P method is the stronger one of the two. 
If the predicted Ca values co uld be improved such that 
~ I C ~ - C k l  is very small and ~ ( C ~ - C a ) = 0  then the 
SI  method would possess considerable potential since 
it would be able to predict, for instance, whether in a 
centrosymmetric structure a Ca value should be + 1 or 
- 1, implying that - Vh + Vk + ~gh- k in equation (3a) 
is equal to 0 or zr respectively. A structure in PT could 
then be solved directly, a goal far removed as yet, 
judging from Table 10 of Hauptman, Fisher & Weeks 
(1971). 

The author is greatly indebted to Dr C. H. Stam 
for many helpful discussions about the project and the 
manuscript. I wish to thank Professor Dr C. H. Mac- 
Gillavry for valuable criticism of the manuscript and 
Mr E. Hessling for assisting in some of the computa- 
tional work. 

APPENDIX 

Weights in tangent refinement 

Germain, Main & Woolfson (1971) describe a tangent 
refinement: 

.~ W,, W~_,,IE,,Eh_,,I sin (~/a + C/h-,,) 
Sh K 

tan Vh = ~ WkWh-ulE,,Eh-,,I COS (~Uk + ~ 'h-k)-  Ch 

where 
Wh =tanh [~3a~-~/21Ehl (St + C~)'/2]. 

(38) 

(39) 

This allows the use of all reflexions simultaneously; 
acceptance and rejection criteria are replaced by the 
weights. Of course a necessary condition is that a 
weight Wh is proportional to the accuracy of phase ~h. 

In our opinion the weights in expression (39) do not 
fulfil this condition. Take, for instance, the values, 
A---~20"30"2 - 3 / 2  E3, given by Hauptman, Fisher & Weeks 
(1971) for two steroids with the same space group and 
about equal molecular weight and cell volume; the one 
structure contains 382 A values between 3.0 and 9.0 
and the other 47 between 3.0 and 5.0. In our tangent 

refinement procedure we try to use more realistic 
weights in the following way: 

Bh>_g-+ Wh=Bh/(Y. WkWh-aA) 
k 

Bh < g ~ W h =  [Bh/g] p 

in which 
Bh= 2a3a2-3/21Ehl (S~ + C~) 1/2 

p=e½ 
and g = 0.8(maximum of A). 

Phases which are below the relative reliability level 
g get a low weight as a result of the exponent p. Phases 
above this level get a weight proportional to their 
relative accuracies in the refinement. 

It should also possible to insert a varying scale factor 
L in expression (39): 

Wh=tanh {to'3cr2-3/2lEh[ (Sl]--k Cl])l/2} . (40) 

where L is chosen such that 

tarth [Laaaz-a/ZlEhl. ½(maximum of A)] = 0.98. 

List of symbols 

h - h k l  
k - h ' k ' l '  
h - h ' = h - h  ', k - k ' ,  l - l '  

IEhl 

N 

N 

.1--1 

zj  

zop --- either 0 or n 

htp-- either ½~z or ~n 

Indices of reflexions 

Normalized structure 
factor 

Number of atoms in the 
unit cell 

Phase of h 

Atomic number o f j  
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Derivation of van der Waals Radii from Known Crystal Structures 
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Methods which can be used for determining the van der Waals diameter constant in interatomic inter- 
action potentials by using known structures of molecular crystals are discussed. It is shown that the 
usual lattice energy minimization procedure is invalid due to the presence of molecular strain energy. 
A method based on the equilibration of nearest-neighbour interactions and the internal pressure is 
developed. Calculations using all available methods have been made for the three crystalline phases of 
selenium and results are given. 

Introduction 

Accurate prior knowledge of the interactions between 
non-bonded atoms is essential if calculations relating 
to such matters as the magnitude of packing forces in 
molecular crystals and the relationship between con- 
formation and energy in sterically hindered molecules 
are to be meaningful. A further important use for non- 
bonded interactions has been found (Coulson, 1960) 
in the field of molecular physics where it has been 
realized that their influence on the length of chemical 
bonds may be highly significant. Another consequence 
of the availability of satisfactory interaction potentials 
would be that trial structure determinations from pack- 
ing considerations, such as described by Milledge 
(1962), could be put on a more quantitative (energy) 
basis for molecular crystals containing molecules of 
known geometry. 

The purpose of this paper is to investigate various 
methods which might be used for determining the van 
tier Waals diameter constant in an assumed mathe- 
matical form of interaction potential from a knowledge 
of the geometrical arrangement of atoms in a molec- 
ular crystal. We will show that lattice energy calcula- 
tions cannot be handled exactly as the molecular strain 
energy contribution cannot be calculated. A method 
based on internal pressure is developed to circumvent 
the difficulty. 

* Present address: Department  of Chemistry, Technion - 
Israel Institute of Technology, Haifa, Israel. 

Methods which have been used for 
estimating interaction potentials 

Two basically different approaches have been used by 
other workers in attempting to derive interatomic in- 
teraction potentials for non-bonded atoms. The first 
approach involves the deduction from first principles 
of the attractive term in the interaction expression. 
Examples of this are due to Slater & Kirkwood (1931), 
Kirkwood (1932) and London (1930). These have been 
applied to hexachloroethane by Sasada & Atoji (1953) 
and result in attractive energies with a spread of some 
12 % about the mean value. All these interactions in- 
volve the reciprocal sixth power of the interatomic 
distance. The repulsive part of the interaction has been 
derived by Born & Mayer (1932) using a quantum- 
mechanical treatment. This, however, was not used by 
Sasada & Atoji (1953) due to the unavailability of cer- 
tain constants needed in the expression. 

Theory thus indicates that a reasonable general ex- 
pression for non-bonded interactions would have an 
exponential repulsive part and an inverse sixth power 
attractive part (considering only dipole-dipole inter- 
actions). This is the basis for the existence of various 
heuristic expressions for the interatomic interaction: 
the 6-exp deriving directly from theory and the 6-12 
interaction of Lennard-Jones (1937) differing from this 
in the repulsive part alone. Of these two, the latter has 
the advantage of containing only two constants and 
as its ability to describe non-bonded interactions is 


